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Confidence limits



Confidence intervals and limits

Confidence intervals from likelihood ratios (see Thursday's lecture) are always two-sided
What about one-sided limits? Fundamental way of constructing an interval?

Two-sided intervals are not unique 41 I
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Neyman construction

Let us assume we have a estimator ¢(Z) of the data & with known p.d.f. f(¢|x)
We want to know the confidence interval for y with coverage C = 8
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Neyman construction

Neyman construction of confidence intervals for parameter p of binomial distribution

N & N_j  Twoeventclasses A, B
Pklp, N) =, )P (1 —p) Probability p = P [A] = 1-P [B]
P(k | p,N) probability of getting k events A out of N total

109 N=10 B=0.68 Neyman-constructed intervals
— Note that p, > 0 for k=0
81k =7 s and p,<1fork=N

Compare with usual method

6 - L
e I_ k1 E

N
where o[p] =0for k=0and k=N

Beware:
0 vPi yP. | Discrete distributions Czp
00 02 04 06 08 10 Continuous distributions C=pf
p



Flip-flopping and empty intervals

Let's regard observation x from Normal distribution with > 0 (physical constraint)
o=1

Flip-flopping
Two choices for confidence interval,
typical approach:

— Give two-sided limit if x > 0
— Give upper limitif £ ~ 0

But: Switching method depending
on data leads to under-coverage
6 =0.85for p=2.5

instead of 8= 0.90
due to flip-flopping -

Empty intervals
p-intervals can be empty for T <

—2 - due to constrainton u>0
<«— empty p-interval
_3 I I I f I I ﬂ
0 1 2 3 4 b 6
U Solution: Feldman-Cousins limits



Feldman-Cousins limits

Unifies construction of two-sided limits and one-sided limits

Avoids empty intervals

Neyman construction + growth rule 4 ena -
Successively grow x-interval at the end with the centra '
largest likelihood ratio I (z|u)/L(x|f) 21 = -

L(z1|p) L(z2|p) O
L(zila) A L(xa|i) . —21

x1,2r1 +dz T2, T2 + dz |
Feldman-Cousins

[t is the maximum likelihood estimate =0F I
of 1 given x under the condition (i > 0 g | i
Example: Normal distribution 4> 0, o=1 4, - CI= 0]90
) - x>0, =z 00 05 1.0 15 20 25 3.0 35 4.0
Lix|p) = Lexp2(7r—:1:2/2) r<0,0=0 . " .
V2 ’ ’ Feldman-Cousins construction
L(zp)  [exp(—(z —p)?/2), >0 is recommended if you want to report
L(z|f1) ) exp(zp— Iu2/2), r <0 a result close to a physical boundary




Monte-Carlo and
resampling methods



Parametric bootstrap

Let's assume we have the p.d.f. f(z|p) for an observation x given parameters p
and an estimate p obtained from N observations x,

We want to know ¢(p]p) or a summary statistic like bias and variance of P

Monte-Carlo method (= parametric bootstrap)

(1) R Statistical uncertainty
plug in p 7 3 >]5’(1) Due to finite sampling,
can be reduced to any level
generate 2(b)
B simulated get B estimates p x
f(xlﬁ) data sets from the simulated §(plp)
A of size N data sets
x may be a A /Svystematic bias .
vector, too ng), e ,xng) > ]3’(3) Due to replacing p by P
Bias of ]3’ Variance of ]3’

AN AN — 1 JaN - —r = 1 A A A
b




Parametric bootstrap
Example: Normal distibution y=0, o=1, N=100

1 1 2
Study biased estimator 6% = ~ Z T — I8 ( Z xj>
? J

300
Analytical results for normal distribution
2
250 .9 9 o
Flo® —0o°|=——=-0.1
6% 0 = -

200 A

N2

Vio?] = 20* ~ 0.18

150 -

Parametric bootstrap

+ Bias and variance without analytical effort
+ Works with arbitrarily complex estimators
o Computationally intensive
— Systematic bias can be important

if p is far away from p

100 -

50

Better performance for large N

10



Random number generation

Scientific programming libraries provide excellent pseudo random number generators
r)?

Pseudo random numbers have uniform (flat) distribution, how to get arbitrary f(Z)

a) Transformation method
A —00

11

y=F<x>=/x de f(z) —[z=F 1 (y)

follows uniform distribution

Practical only if F-'(y) or a suitable approximation to it is available

Multivariate case complex, an example in 2d:

Solve in order

/ dwo/ d%f 5507551) = Yo

xl d%f( 1) _
ffoood%f( L0, L 1)

Analog in case of more dimensions

0.07
0.06
0.05 =
0.04 ¥
0.03 <
0.02
0.01



Random number generation

Scientific programming libraries provide excellent pseudo random number generators
Pseudo random numbers have uniform (flat) distribution, how to get arbitrary f(Z)?

b) Accept-Reject method
Construct a (hyper-)rectangle around f () that completely encloses it
Uniformly draw points (Z, f') from inside the (hyper-)rectangle and accept & if f' < f(Z)
1d exgmplel

+ Very general method

+ Simple to set up

o Need to know max[f(x)]

— Inefficient/slow: many points are wasted

Efficiency is greatly improved by
sampling from several local boxes

0.8 1.0
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Full bootstrap

What to do if f(x|p) is unknown?

We could still use the Monte-Carlo method to study an estimator ¢(Z) of the data &
if we had an estimate of f(x)

Non- parametric maximum-Likelihood estimate of f(x)

0
maximize In f Zln f (x;) without any further knowledge except / flx)y=1
— o0
: 30
R 1 N =10
non-parametric _ 5(r — 1
: xIr) — I I o = 5
; =500
Assumptions: x, from same f(x), x, are independent 20 - -
S i
No proof, but =15
(£E|CL Zak‘g x|:uk‘7 Ll I
J e
Hi =N _ 1A$ 2] f N \/ I
g(x|,u, (7) Normal p.d.f. o Nl_ 1Ax o . [ \ I

converges to fz(z) for K — oo (infinite flexibility) | | X

13



Analytic bootstrap estimates

Plugin principle

Construct bootstrap estimate by replacing true variable in formula by empirical one

EB[:U]z/dxxf(x)z/dxx%ZMx_xi):%Z% ?naergﬁle

(/

1 1 2
_ 21 _ 2 _ 2 _(— , sample
Vslz] = Epla”] = Eplz] N sz (N Z% > variance (biased)

J

Like any estimator, a bootstrap estimator can be biased if the sample size is small
(Bias can be detected and corrected by a double bootstrap, i.e. bootstrapping the bootstrap)

Two other bootstrap estimates are well known to physicists
Uncertainty of a Poisson count k& + vk : VIAl=A — Ve[A\| =k
Uncertainty of a binomial proportion (e.g. efficiency of a detector):

14



Monte-Carlo bootstrap estimates

Use in Monte-Carlo estimation

Draw random numbers from f(x) 250 | | |
Pick x. with equal probability with replacement

Re-examination
Normal distibution y=0, o=1, N=100
and biased estimator

o 1 ! 2
== (¢ — =) ;)
D SO S

0 Same pros/cons as parametric
bootstrap

+ Effortless to apply

— Biased for estimators that depend
strongly on distribution tails

15
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Other resampling methods

Jackknife — fast approximation to full bootstrap

5 N -1 g N=1 — 1
Ejac:k[Z5 _p] — T Z(ﬁ(]) _ﬁ) VjaCk[p] = T %’L (Zp(])>
- ,

7

Py = t(@1, ..., ®j—1,Tj41,. .., TN) estimate of p without observation x

Only needs N additional evaluations of ¢(Z), but less precise

Leave-one-out cross-validation — compare prediction power of models

Can only be used with (x,y) pairs, y = f(x)

LOOCV = Z (yi — [ (xi))2 o mean squared error = bias? + variance

bias? is large if model is not flexible enough, i.e. is missing effects in the data
variance is large if model is too flexible, i.e. “overfitting” the data

Model with best prediction power has smallest LOOCV value



Maximizing prediction power

Example: fit of a polynomial model

True model f(x)=1+2 x+ 3 x*, y = f(x) + Normal fluctuation with y=0, o=1

Fitting model fx(x) = E?:o pr ¥, what K to choose if Kis unknown?

15 | 1 | | 1
_fK(x) — 1, LOOCYV = 22 _fK(x) =1, LOOCYV = 369
best
— fi(x), K=2,LOOCV = 10| "0 — fx(x), K =2, LOOCV = 129
best
10| — fx(x), K =3, LOOCV = 12 ! [ =fk(x), K=3,LOOCV = 103 | /,,yer
— fx(x), K =4, LOOCV = 21 — fx(x), K = 4, LOOCV = 104
-
5_

N =10 . N = 100

17



Testing hypotheses

18
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T CANT BELEVE SCHOOLS
ARE ShlL TEACHING KIDS

ABOUT THE NULL HYRITHESIS.
l

T REMEMRER READING A BIG

STUDY THAT CONCLUSVELY

DISPROVED IT }EARS AGO.

gl

http://xkcd.com/892




Testing hypotheses

20

Introductory example
Does a fraction of the sky contain a source of

15 1 .
cosmic rays?

=w{ . a® - | Hypothesis H, (‘background hypothesis’

There is only background and no source

Hypothesis H, (“signal hypothesis”)

0l SRR There is background and a source!

0 5 10 15 20
X

Lots of special cases (see literature), most common one for Physicists:
f(@) = (1 —s)fs(Z)+ sfs(Z|ps) Hy: s=0 Hi:s>0

— Continuous family of hypotheses

We need a test statistic that discriminates between H and H.

—2InA = —2In max L(s = 0, ps = 0) likelihood ratio is asymptotically
max L(s, ps) the most powerful test statistic

20



Type | and type Il errors

Hypothesis tests are fully characterized by their Type | and Type |l errors

Type |l error B
Probability of accepting H, when it is false
1 — B = power of the test (efficiency) Type | error a

A

p.d.f.

Probability of rejecting H, when it is true

acceptance | critical 4 _ 5 _ confidence in rejecting H, (purity)

region | region

test statistic

Desired confidence 1-a defines the critical region, so tests are compared by their power 1-3
In our case, 1-8 cannot be calculated, since H, is not fully determined

Fortunately, only H, is needed to determine the critical region

21

Test must be completely defined before seeing the data
Confidence of rejecting H  is not confidence in choosing H, (a # B)




Critical region

How to determine critical region for given confidence 1-a ?

f(@) = (1 —s)fs(Z)+ sfs(Z|ps) Hy: s=0 Hi:s>0
_9In\ = —91n max L(s = 0,ps = 0) is asymptotically distributed as e (r)
max L(s, ps) r = number of parameters
fixed by H, but left free by H,

Asymptotic properties are nice, but test usually used with small data sets...

Recommended: Monte-Carlo-based determination of critical region

xgl)ﬂ 715\%) . —2111)\(1)
/ generate \
— B simulated get Bvalues of —21In A 1-a quantile of
B(Z) data sets from the simulated —~2In\ distribution
: data sets defines critical region
\ of size N /
.TgB),... ,:U%-B) > —2In AP

22



Critical region —

example

In our example
Background: 2d uniform distribution

Signal: 2d normal distribution f@y) =1 —s)fe(z,y) +sfs(z,y)

1
fB(xﬂy) T AI’Ay

fs(z,y) = % exp [— %(ﬁ + y2)}

Hy: A¢g =0 Hi: X ¢ >0

sis free in H,, but fixed in H
no other free parameters

— asymptotic distribution of —2InA is x3(1)

Reject H, if in real data set —2InA > ¢

23

- Critical region for 99 % confidence
10 | | | | | | | |

—x3(1) _
H, simulation -
c, =52 J Ho simulation ;

C = 6.6

asym

Simulation of 10000 |
uniform backgrounds
with N = 120 events |

0 2 4 6 8 10 12 14 16
—2InA



Hypothesis test — example

N=120 uncovered: N; = 100, N, = 20
20 - L 1 20 L . L L

15 1 - 15 - -
=107 ' L T =107 : N ' T
51~ - 5~ -

0 i~ T T ~ T 0 ~ T T T -
0 5 10 15 20 0 5 10 15 20

X X

Teststatistic _ 91, \ — 383> ¢
in real data

=)

We reject the background-only hypothesis H
with a confidence of at least 99 %

Confidence does not increase even if —=2InA > c! (property of test, not of data)

24



Trial factors

. Look-Elsewhere-Effect

WEFONDNO | | WE Foonono | | WE RounpNo | | WE FounDNo
UNKBEEEN || LNKGEWEEN || UNKBEWEEN || UNKBEWEEN | | LINK BEIVEEN
PURPLE JELLY BROWN JELLY PINK. JELLY BWE JEUY TEAL JELLY
Be careful when you look for & & & & &
something in many places! ?\a ﬂi ﬂ% ?\a 7\%
VEruNoNo | [ weroonoNo | [ wERoovona || WE Foonono | | WE Founono
UNK BEWEEN | | LNKBETJEEN | | UNKBEWEEN | | UNKBEWEEN | | LINK BEVEEN
senenore || Snenbmic || atnore || Bamore | | sababhee
P —— WE FoONDNO THAT SEMES THAT, || (P00%). (P>o}05)_ (P‘?O}os). (p>00s), (P>008), EM&JS =
CAUSE ACNE! LINK BETWEEN :
HEAR IT
scomss) || Euveeasae || [IHERTOw | P || O] | O] || O || D GREEN JELLY
vESTGATE! | | ANE (P>005). | | [ piarcases T
L 2 eS| / RBEANS ITINKED
Tk Bur ;
FML ( e e roovone. | [ WErovono | [vEmuvone | [wErmo A | [ WE rovono To ME" .
d Wl G5 || | B | B | e || qsy Conpene
% i @ >, || S moroe || cemsmoroe || cemsmbre || Geamore || B more 4 .
(P>005), (P>0.05) (p>005), (p< 0.015), (P> o)os), wrrremr eI
/! / / S S, W
whoA 5% CHINCE b
@ @ D || @ QNN e
‘ e A
= =
Lo || nicoove | | ek GEDe || Lk B | | L BevE http://xkcd.com/882
BEIGE JELLY LILAC JELLY BLACK. JELLY PEACH JELLY ORANGE JELLY
GEAs MOROE | | BEANs o AOIE | | Bes mbAE | | BEANSA0AGE | | BEANS miDAOIE
(p>005) (p>005) (p>005) (p>005) (p>005).
/ / / / /

25



Trial factors — example

Our example revisited with signal location unknown

! ! 2 2 source iti
= — S — _ position free
fs(x, ymx’ ,uy) 2m P [ 2 ((ac ’Lﬁ) + (y &) )} in signal model
Samples from uniform distribution Critical region for 99 % confidence
tend to form clusters 105 - l . l l _
— Clusters appear like sources —x2(3)
— large —2InA more frequent 1] X .
10 4 c - 113 B Ho simulation }
Example from H  simulation : asym ' ;

S | c,. =15.1

15 {

=10] :
—2InA =19
5 o
0 | | . .'
A 0 5 10 15 20 25
Natural form of apophenia! —2InA

26



Goodness-of-fit tests

Goodness-of-fit (GOF) test = Lesser form of Hypothesis test

Test of H with against all possible other hypotheses: H, completely unspecified
— Power 1- unknown

Components of a GOF test o
Test statistic t and ¢.d.f.F'(t) = / dt’ f(t|Hy) to convertt into P-value
t

Small P-values indicate “bad fit” of model to data

L P-val t
P-value = P(data|Hp) is not P(Hy|data) arge ' -vaues are no

evidence in favor of HO!

Some GOF test statistics are independent of H, (distribution-free) f(t|Ho) = f(¢)

e.g. Pearson's Chi-square test and Smirnov-Cramér-von Mises' test
(for data pairs and binned data) (for unbinned data)

For combined tests calculate P-value from Monte-Carlo simulations of H0

27




Pearson's Chi-square test

|ldea: sum up squares of normalized residuals of data points around model

= - F) V- @) 3 (M ) -3

if y. are uncorrelated

Z; have normal distribution with =0, o= 1 independent of H,
If y. are correlated, one can find transformation to decorrelate them and get same result

N N 1 (¢\IV/2—1 o—t/2
Bl =3 B =N V=3 VE]=2N  f(t)=" (2>r(ﬂ>

If f(x) has k free parameters fitted to the y, replace Nby N — k

No formal proof here, but intuition:
Due to fit of f(x), z are no longer independent — k "degrees of freedom" lost

28



Smirnov-Cramer-von Mises test

— /OO dz [F(z) — F(z)]>f(z) is independent of f(x) (= H,)

F(m)z/_oodxf N/ da’ ZcSa:—a:Z = ZHm—xz
H(x) HeaV|S|de step function
Proof: insert substitution y = F(x) —» t= / dy [ﬁ’(y) —y]?
1 4N — 3
Elt| = — = i
[t] N Vt] TORE no f(t) in closed form - tables

asymptotic 0.461
distribution,
reached for N> 3 _

0.999 1.168

29



General formula for any distribution

Vit = (- 5=1)

30



Hyp_othesis probability after

31



Testing hypotheses

Recent example: structures in cosmic ray sky found by the Pierre Auger Observatory

sky map of CR arrival directions in galactic coordinates

active galaxies closer than 75 Mpc from
Véron-Cetty & Véron catalogue

----

blue color indicates exposure

O Auger data

----------------- } 27 events with E > 10'%7 eV
0 (data up to September 2007)

" Science 2007
also see Astropart. Phys. 2010

UHECR sky seems anisotropic, let's reject the hypothesis H [CRs are isotropic]!
With what confidence can we do it? or What is the probability to be mistaken?

32



potheses

*_. et " —

Test statistic
120"\ - Number of correlating events k out of N
' (k follows binomial distribution)

H, prediction (isotropy)

21 % of cosmic rays correlate —» p = 0.21
(AGN coverage of the sky)

H, prediction (anisotropy)
p >=0.21

33
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