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Probability density estimation



Probability density estimation

We now know two estimators of the probability density f(x)

| Bootstrap estimator

| . 1
| fB(T) = N 22:5(55 — T;)

| with data points Z;

Histogram estimator

|

| f = kl/N r—T X — X
0= g e - Ha o
|
|

with k, being the number of data points

o that fall into the interval (x,x
| can only be used in integrals (X, X,.1)
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Bin sizes are usually selected ad hoc =03
“
Objective, optimal choice? 0.2
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Probability density estimation

Criterion: integrated squared error (ISE), combines variance and bias of estimator

ISE = / dz [f(z) / P — 2 / F(o) £ (0)do + /ﬂ_[j_(x)]f“zi};w

constant
Y
T cross-validation
f Z f(z) xz
Result for uniform histograms . 2 n+1
using cross-validation ISE(h) = (n —1)h n2 (n—1)h Z ki
(Z141 — 21 = h) Minimize to get optimal h

Bootstrap and histogram estimates are useful, but fail at least
if derivatives f'(x), f”(z), ... are needed

Can we construct some kind of smooth histogram?



Kernel density estimation (KDE)

|ldea: convolute bootstrap estimate with smooth kernel function K(x)

fa) = [ar's (555) fute') = Nih;ff(x;f)

with K (x) > 0, / deK(x) =1 ¢ bandwidth

+ derivatives are well defined
— kernel density estimators are biased by construction

Many choices for K(x), two stand out
+ optimal kernel

3(1 -2 1<
Epanechnikov K (z) = {4(1 r7) —l=x <1 + fast to compute
0 otherwise — finite support
1 2 .
: K(x) = e~ /2 + infinite support
Gaussian (@) V2T — slow to compute

In practice, the choice of the kernel does not matter much for the statistical quality
Important is the optimal choice of bandwidth h for the given data set



KDE examples

100 data points
from Normal
distribution
u=0,o0=1
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KDE asymptotic properties

Mean integrated squared error (MISE) approaches zero at rate O(N-#¢+4)
£ dimension

MISE = [ dz E[(f(2) ~ f(2))"] = [ VIf(@)] + (Elf(2) - f(2)])"da
Convergence rate is slower than for parametric density estimates, e.g. O(N-*°) for r=1
approximate asymptotic variance  approximate asymptotic bias
VIf(z)) = 2@ _ )] Elf(x) - f(2)] = 307> " (x)
with R(K) = [dz[K(x)]* and 0% = [dz2?K(z)
— optimal h balances variance and bias
R(K)
h=(=
ox R(f")
n—oo=h— 0= E[f(z)— f(z)] — 0 KDEs are asymptotically unbiased

1/5 15
> n minimizes asymptotic MISE

5 S =sample standard

" H H . —1
h depends on f"(x), for normal distributed data hg = 1.06 s NV / deviation

In practice, h can be obtained by leave-one-out cross validation
Another way is to use a surgurate estimate like h,to get R(f") in order to calculate h

Sheather and Jones found best plug-in estimate so far, see literature



Unfolding of resolution effects
from data distributions



Resolution effects and unfolding

Special case of density estimation: unfolding of resolution effects from data distributions

Experimentalist wants to measure real-valued observable x, however
detector does not measure true x but y = X + O <«— random detector generated offset

Example 6 x10° . .
Two Gaussian peaks with random --- truth | 1000 data points .,
Gaussian resolution offset 5 || * ¢ data P 0= 0.05 I
How to obtain 4 : ". i
non-parametric estimate ¥ detector resolution P
of f(x) from observed y.? X 3 Ores = 0.1 P i
5 R
| = to _
Approach: fit convoluted 2 + J’ t
oc=20.1 - l: \
gly) = /de(y,aj)f(m) 1 T b “‘+ C |
resolution kernel . o F ¢ ‘t\ ; \ .
to data, using a flexible (R i — L - .
parameterization for f(x) 0.0 0.2 04 06 0.8 1.0
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Parametric vs. non-parametric unfolding

Parametric case — model known

Prior information:
Solution = sum of 2 Gaussians

f(x) has 6 free parameters,
parametric model avoids over-fitting

Non-parametric case — model unknown

Prior information:

Solution is regularized in some way,
e.g. has to be smooth

f(x) has many free parameters,
regularization avoids over-fitting

3
7 x10

0.0 0.2 0.4 0.6 0.8 1.0



Unfolding problem is ill-posed

Represent general ao .
solution as Fourier sum f(z) = — + E aj COS BTy + by, sin B2 g

: . 2 Ax Ax
with many coefficents

Fold with kernel K(y,x) l g(y) = /da: K(y,z) f(x)

Fit to data g(y) 2}; k COS (k—y) + by, sin (kA_a: )
In case of Gaussian kernel - 9 9
) ar = axexp | =k“o
1 (y — x) 2
K(y,z) = CXPp |\ ——5 -

2mo 20 -~ 1

br, = b exp | =k’0”
coefficient relation can be calculated analytically k= Ok €XP 9

Folding acts as low-pass filter Unfoldlpg_acts as hlgh frequency ampllfler
But: high frequencies are mostly noise

11



Unfolding w/o regularization

3 x10° | . .
-~ ()
"1 —fw) '

Without regularization,
fit prefers solution 61 —b(x)
dominated by

high frequencies

|

wild oscillations
huge uncertainties and
strong correlations

12



Unfolding with regularization

i 5 -
| o) _
i
Regularization penalizes 61 —b(x) i
high frequencies in fit ¢ data ,"1‘
— smooth solution 2 '

|

But: solution is biased

Challenge: trade-off
bias vs. suppression of
high frequencies

13 Hans Dembinski - Unfolding



Unfolding algorithms

® Unfolding algorithms in Physics

® Gold (1964) )

® Blobel (1984) — RUN algorithm Based on binned data,
® D'Agostini (1992) — Bayesian approach > no automatic choice

® Schmelling (1994) — Maximum entropy of regularization weight
® SVD-based unfolding (1996) )

® ARU (2011) — http://projects.hepforge.org/aru

® Unbinned maximum-Likelihood fit

® Regularization based on distance to original data distribution
= |nvariant to data transformations
= Strength inverse to local density

® Automatic choice of regularization weight
= Criterion: minimum MISE

® Full analytic uncertainty calculation

14 Hans Dembinski - Unfolding



Multivariate classification

15



Multivariate classification

Hypothesis test between two fully defined models in 1d
A Finding decision boundary: easy

acceptance | critical
region | region

p.d.f.

test statistic

Hypothesis test in nd — typically p.d.f.s not available, only training data sets
Finding decision boundary: challenging

Manually placed rectangular cuts may be inefficient and nd-data hard to visualize
16



Classification methods

Power of the hypothesis test now depends on form of decision boundary
Classification methods find good decision boundary automatically

Methods can be compared in purity vs. efficiency plot

§ o Checkerboard example
3 from TMVA package TMVA

. 5 = 1 ™ s = = e=Eai TT 1T
training 2 s TN '
data g 9

a 8 ¢

8 .g SSUSPUUE PPN M. SNt SUUUUUPUUR o WUUNUUURAE SUUUUUURURUPUOE V. YYUURUNUPRN: SURUURURRONE SOV SO, - NSO
— - |
S B CJMVAMethoaN s
]
z 3 U SO o 08 Ut = L 5 A R bs- S, N SO SR STURUSUPR ISP
% 3: "5 :
: S esfom—MIEA . A W
I 5 O b T Ruerit TN LN
computed -

P : S — gaF. o HMatix o Tesed N
decision o > | | | | : | |
boundary = PP PRI IR PETTY PETTY PYTTe PN L

y g 8 02,7761 02 03 04 05 08 07 08 08 1
o 8 1 — (3 Signalefficlency
‘ o

Probability of correctly accepting signal
17
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Popular classification methods

® Probability density estimator range-search (PDERS)
® Estimate joint p.d.f. of signal and background with KDEs
® Use likelihood ratio of p.d.f.s to find decision boundary

® Boosted decision tree (BDT)

® Repeat two steps many times
® Build tree of optimal rectangular cuts from weighted data set — save tree
® |ncrease weight of misclassified events (Boosting)

® Decide via majority vote over all cut trees

® Artificial neural network (ANN)
® Fit flexible parametrization of decision boundary to training data set

® Support Vector Machine (SVM)

® Find hyper-plane that best separates two event classes after projecting
data points into higher dimensional space



Comparison of classification methods

Classifiers

Criteria - Projected  PDERS/

likelihood  K-NN Fisher MLP BDT

no / linear
Perfor- correlations

mance nonlinear
correlations

®
®
Training ®
©
©
©

® O 006 0

®
©
Speed l
Response @ ®/® @ |® |
[
T Over-training @ @ @ :@ |
ness Weak input @ ® @ | @ |

variables

urse o

Transparency @ @ @ @ ® ® | ®

19 table adapted from Andreas Hoecker,
Lecture on multivariate analysis techniques, Karlsruhe 2009

SVMs are recommended



Artificial neural networks

General problem To A

Find decision boundary

to best separate
two classes A, B of events

— based on a finite training sample
—and in such a way that
boundary generalizes well
to new samples

If you are thinking about “fitting a
empirical separation function”,
you are on the right track

example with non-linear decision boundary

W

1

20 slide adapted from Jan Therhaag, TMVA workshop, CERN 2011



Linear classifier

Code classes A, B in binary variable
y €1{0,1} T2

)

Fit this to data to obtain weight vector

L 4

Then, decision boundary given by
N < 0.5 — class A L1
Y=Y %1505 — classB

21 slide adapted from Jan Therhaag, TMVA workshop, CERN 2011



Linear classifier - Perceptron

We want to interpret ¢ as a probability — apply sigmoid transformation

bounded between [0,1]

sbbonag

o(y) can be interpreted as P(class B|Z)

P(class A|¥) = 1 — P(class B|Z)

=0o(-9)

22 slide adapted from Jan Therhaag, TMVA workshop, CERN 2011



Neural networks

B31

iInput layer hidden layer(s) output layer
number of nodes = any number of nodes number of nodes
dimension of input = dimension of output
(providing distribution) 7 = 1 (providing offset and scaling)
X, =1 g
a
01
I311 BOl
X1 oy,
Blz y1
le Ua
@ \
[332
Bos

S

X =1 /‘0‘02

0 _ 1 f = sigmoid function
2, = g = linear function

23



Universal approximators

Kolmogorov's universal Y
approximation theorem | ~""""7te2 aining dats
example 2

Neural network with one hidden
layer of sufficient size can
approximate any continuous function
to arbitrary precision

Non-linear optimization problem

with several local minima

— use global optimization schemes
(time consuming training)

Unknown required number of
hidden nodes for a given problem Y
— use as many nodes as
computing power permits
— avoid overfitting via regularization

24 slide adapted from Jan Therhaag, TMVA workshop, CERN 2011



Overtraining

Decision boundary can become

overly complex for many hidden nodes
— bad generalization
- overconfident prediction 2

Weight magnitude ~ smoothness

:

Regularization
Penalize large weights during
global optimization

E(w) = E(w) + Awlw
hyper parameter

No weight decay Weight decay
y2 Y2
1 i

. Training Error: 0.100 = _
J TestError: 0259 =
BayesError: 0210 . oo

&£o N
H I
Il- 1l- NN with 10 nigden unies %

L e I B T = = 0 07 - D

— c, o = 0o T r D b= 2
R ST N S N R T S R t‘T R S I U R = T

= N
[N A O O O EETNE I U FO O T R

25 slide adapted from Jan Therhaag, TMVA workshop, CERN 2011



Neural networks — summary

X

Yi
X2

Y
X, 2

® Neural networks are universal approximators
® Can be used for regression and classification

® ANNSs are difficult and time-consuming to train,
but provide fast prediction

® ANNs become very powerful in Bayesian context
® Use MCMC simulation to obtain global maximum
@ Maximize Bayesian evidence to obtain optimal hyperparameters (no overfitting)

® NN are nothing special, any flexible mapping R’ = R° would do the same

26
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